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In view of the mathematical complexity of the problem of supersonic flow 
around blunted bodies, no sufficiently accurate analytical solutions 
have yet been found which are free of strong assumptions. The experi- 
mental study of the blunt-body problem is also hampered by serious 
difficulties (especially at high Mach numbers) and generally yields 
results of insufficient accuracy. Therefore, in recent times, numerical 
methods based on the use of high-speed computing machines have been 
widely applied to the problems of supersonic flow around blunted bodies. 
One of the most effective numerical techniques is the integral method 
suggested by Dorodnitsyn [ 1 I and developed by Belotserkovskii [ 2.3 I 
for two-dimensional and axisymmetric supersonic flows around blunt bodies 
with detached shock-waves. This method permits the construction of the 
mixed-flow field in the region of influence in the neighborhood of the 
nose of the body. 

The supersonic flow downstream of that region can be computed by the 
method of characteristics. In the present paper, a method of character- 
istics, adapted to electronic computing machines, is described and 
applied to a series of blunted wedges and cones. 

In the usual method of characteristics used in gasdynamics, the basic 
variables are the coordinates x, y, the Mach angle tz, the angle between 
the local velocity vector and the x-axis 8, and the entropy s. However, 
in such a case, the characteristic equations contain trigonometric and 
exponential functions, which lead to a large number of sub-programs for 
the calculation of elementary functions and absorb much machine time. 

Ehlers [ 4 1 suggested the use of the following unknowns in the method 
of characteristics: 
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P= cota= 1/m g=tane, s 

This allows the reduction of the coefficients in the characteristic 
equations to algebraic functions and provides substantial economy of 
machine time. However, the method in the form presented by Ehlers cannot 
be used altogether generally. (Ehlers examined only the simplest example 
- that of two-dimensional potential flow in a nozzle.) In Ehlers’ form- 
ulation, the iterations in the computation of the shock-wave do not 
always converge, an unfortunate choice of the constant in the entropy 
function precludes computations for the case M = 00 (s in the free stream 

was assumed zero), and no allowance was made for the possibility that 
the characteristic curves may be vertical or horizontal. The numerical 
method of characteristics, presented below for the computation of the 
supersonic part of flows around blunted bodies, consists of a combination 
of the two methods mentioned above. 

For the unknown functions 
s = ln(p/pK), where p is the 
stream density, p,. p is the 

(a* designating the critical 
ponent. 

in this procedure we take x, y, 6, c, and 
dimensionless density. referred to the free- 

dimensionless pressure, referred to p,a2 

speed of sound), and K is the adiabatic*ex- 

Let us represent the differential equations for the characteristics 
and for the relationships valid along them for the first and second 
family in the form 

where 
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(1) 

(2) 

and where j = 0 for two-dimensional flow, j = 1 for axisymmetric flow, 
and c = (K - l)/(~ + 1). The system (1) to (2) is written for the case 
where the characteristics of the first family are not horizontal and the 
characteristics of the second family are not vertical (with only the 
upper half-plane of the flow field under consideration). 

The entropy s depends only on the stream-function I,!J so that we may 
introduce a modified stream-function v through the equation 
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Then, we shall have along the characteristics of the second family 
(for example) 

dY Yj v’w -I- 1) (5” -I- 1) 
d; = - (p + g) (se2 + I+‘= = q 

The entropy s can be obtained from \I’ through the relationship s= S(T) 

established along the shock-wave. 

(b) 

Fig. 1. 

In evaluating the quantities x, y, PI 6. ‘Y’, s at an arbitrary goint 
of intersection (Fig. la) of a characteristic of the first family, I. and 
of a characteristic of the second family, II, from the corresponding 
known values at points 0 and 1, we apply Equations (1) to (3) in the 
finite-difference form. Let us write these finite-difference equations 
in a form similar to that of 15 1 : 

x2 = 
XI- mnx0 + m (y. - ye) 

1 --nan f y2 = Yo -I- fi (x2 - %I) (4) 

p2 = yo + q (22 - x0), s2 = s (Y‘A) 

P2 = 
&iKP1--L(ya- yl) + p (82 - SI) - co + Jpo - N (~2 .- 2o) + Q ts2 _ so) 

J-M 
- (5) 

52 == 
J 151 -t- ml- LJ (Yz - ~1) + J’ (82 - sl)l -+ K Ko- JP,+ N (zz-10) - Q (+-so)] 

J+K 

This system of equations is solved by an iteration process in which 
the first iteration uses coefficients evaluated at points 0 or 1, respect- 
ively, and subsequent iterations use the mean values of the coffieients 
between the points 0 and 2, or 1 and 2. Usually three iterations suffice 
to give adequate accuracy. The point 2 in Fig. lb on the body (y = f(x)) 
is coaputed by the iteration method described by Ehlers. In this proce- 
dure the contour is approximated by a line tangent at the point 

li(zli= rli) in each iteration, First one finds 

22 = =x0 - Yo 4- f lx?)- xzi (x2) 
n - f’ (x2) 
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by using on the right-hand side of this equation the value x2 from the 
preceding iteration. (In the first iteration the value of z1 from the 
preceding point on the contour is taken.) Then, from the now-known x2, 
one calculates ya = f(x,), rz = f'XxZ),and from Formula (5) the quantities 

& (since the entropy s2 on the contour is known). All the coefficients 
are determined in the same manner as described for the field points of 
Fig. la. The iterations proceed until sufficient accuracy is achieved. 
For the control of the accuracy one uses the value of y at point 2 and 
compares it with the known value of y on the contour. 

The evaluation of point 2 on the shock-wave S (Fig. lc) is achieved 
by successive estimates of values for the tangent of the shock-angle 5, 

at this point. Starting from an estimate tz (close enough to the value 

at the preceding shock-point O), one determines the following quantities 

from the shock-equations: 

h,2E22 (x + 1) Jf,s 
pz= l-&&2+ Ez” 

Q 2= 
(a 

\ 2 + (x - 1) Mm2 / 

p2 = r/ kc02 (E22 + p22) - P22 (1 + E22) 

-&&z&2+ P22) + P‘2(1 + b2) ’ 
c2 = E2 (P2 - i) 

E2” + P2 

s2= In 
{[ 

2 A.,“E22 
- ~ -+ (1 - eh,2)] lip-X} 
x + i i + E22 

and the coordinates x2, y2 from Formula (4). using X = 1/2(4‘e + t2;, in- 

stead of n, and approximating the segment of the shock-curve by a para- 
bola. Verification of the correctness of the estimated value of 6, is 
obtained through the equation along the characteristic of the first 
family: 

52 - Cl+ K (P2 - PI) + L k/a - YI) - P (~2 - a) = 0 

The evaluation of the unknown functions is completed with 

1 
- hm Y2=Y,+xX-’ - 

2 (1 + 1) ( 
exp %&- + exp “-) (yzl+j - yol+j) 

x-l 

The supersonic parts of flow fields around a series of blunted two- 
dimensional and axisymmetric bodies of simple shape at zero angle of 

attack were computed by the described method of characteristics. The 
blunted wedges and cones had half vertex angles 6 of 0. 20, 30. and 40 
degrees, and the blunted contours were circular. The two-dimensional 
bodies were computed at M = 3. 4, and 5. and the axisyametric bodies at 
M = 3. 4, 6, 10 and =. For these cases, the whole flow field was con- 
structed, and in particular the shock-shapes and the pressure distribu- 
tions on the bodies were obtained. The coefficient of wave-drag cz, re- 
ferred to the cross-sectional area of the body, was also determined: 
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Some of the results of these computations are presented graphically. 
Figure 2 displays the flow field around a cone of half-angle 6 = 20’ at 
M- 6. In particular, the shock-wave S and the sonic line CD are shown. 

The computations by the method 

of characteristics were started 
on a radial line OB in the 
supersonic region, on which the 
initial values were known from 
the second approximation in the 
integral method. Only a part of 
the characteristic net is seen 

in the figure - actually the ._.- -.- -_- 
segment AB was divided into 48 0 

intervals. In some cases, where Fig. 2. 
a very sharp deceleration of 
the flow downstream of the transition from the circular to the straight 

profile was present, successive 

responding conical body and its attached 
shock are shown as dotted lines for com- 
parison. Also shown is the characteristic 
of the first family AB, which starts at 
the juncture between the spherical cap 
and the conical body and thus separates 
the purely spherical part of the flow 
field. If, at B, the shock which cor- 
responds to the spherical cap is weaker 
than the corresponding cone-shock, the 
shock-wave of the blunted body will have 
a point of inflection. Such a case occurs 
in Fig. 3. 

characteristics of the first family, 
issuing from this region, did intersect. 
This fact points to the formation of a 
“freely hanging. shock-wave in the flow 
field. 

At large distances downstream, the 
shock-rave of the blunted body approaches 
a conical shock-wave which corresponds 
to the body without blunting. Figure 3 
shows the detached shock-wave for the 
blunted cone 6 = 30° at M = 6. The cor- 

0 2 4 6 
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The dotted lines in Fig. 4 represent the pressure distributions on 
blunted wedges and the full lines those on blunted cones with various 
half-angles 6 at M = 4. The pressure p is here made dimensionless with 
the pressure pe at the stagnation point and the axial distance x with 

radius of the blunting contour R. The pressure-curves 

GJ 
have two branches - the one on the left corresponds to 

P 
77 

!1 

t 

the circular part of the contour and the one on the right 

0,4,- --; 
to the rectilinear part of the body. The part of the left 

t\ j 
branch between the stagnation point and the point where 

43’ I- 

ii 

; the characteristics method was started is 
not shpwn. The corresponding pressure on 

“‘1 ii -.,9;;*7--- 7 ~ _-~L 

$*I 

unblunted wedges and cones is given by the 
-+ 

AL.=6 horizontal lines at the right of the 

1%f,=ru 
figure. 

j 
---1-sL’ 

The pressure distributions on a cone, 
0 z 4 8 x/U 10 6 = 200, are exhibited in Fig. 5 as func- 

Fig. 5. tions of M,. Here also the unblunted cone- 
pressures are shown at the right for the 

same Mach numbers. It can be seen that on blunted wnes at high Mach 
numbers the pressure continues to fall even on the rectilinear part of 
the body and that over a sizable part of the body it remains lower than 
the corresponding pressure on a sharp cone. 

The variation of the wave-drag coefficient cZ of the blunted cones 
6 = 0, 20 and 30° at M = 6 with the distance to the base cut-off is dis- 

played in Fig. 6. (The case 6 = 0’ refers to a cylinder 
with a half-sphere for nose.) In the graph, point 0 cor- 
responds to the stagnation point, for which cZ is simply 

equal to the pressure-coefficient c , and 
point A to the limit of the region if in- 
fluence of the nose. The points Be, B2,, 
and B3c represent the junctures between 
the spherical and the straight portions of 
the body for the respective values of 6. 
Here the dotted horizontal lines indicate 

0 2 4 6 8 x/R f0 
the value of cZ on unblunted cones. It is 
seen that blunting influences the drag of 

Fig. 6. a cone only over a relatively small portion 
of the body. 

Before concluding let us note that the present computations by the 
method of characteristics were carried out under the author’s guidance 
on the electronic computing machine at the Institute of Numerical 
Techniques of the Academy of Sciences of the Chinese People’s Republic 
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(Peking). I express by deep appreciation to the Chinese mathematicians 
Van Shu-Lin, I Chen-Ghuci, Ku Yuan and Len Zun-kai, who set up the pro- 
gramming and carried out the computations on the machine. The author also 
wishes to acknowledge his indebtedness to O.M. Belotserkovskii and 1u.D. 
Shmyglevskii for their valuable advice and interest in this work. 

BIBLIOGRAPBY 

1. Dorodnitsyn, A. A., Ob odnom metode chislennogo reshenia nekotorykh 
nelineinykh zadach aerogidrodinamiki (On a method of numerical 
solution of some nonlinear problems of aerohydrodynamics). Proc. 
3rd All-Soviet Matheratical Congress 1956, Vol. 3. Izd-vo Akad. 
Nauk SSSR. 1958. 

2. Belotserkovskii, 0. M., Obtekanie simmetrichnogo profilia s otoshed- 
shei udarnoi volnoi (Flow around symmetric Profiles with detached 
shock waves). PMM Vol. 22, No. 2, 1958. 

3. Belotserkovskii, O.M., 0 raschete osesimmetrichnykh techenii s oto- 
shedshei udarnoi volndi na elektronnoi schetnoi mashine (On the 
computations of axisymmetric flows with detached shock waves on 
the electronic computer). PMM Vol. 24, No. 3, 1960. 

4. Ehlers, F. E., The method of characteristics for iso-energetic super- 
sonic flows adapted to high-speed digital computers, J. Sot. In- 

dustr. and Appl. Math. Vol. 7, No. 1, 1959. (Russian translation, 
1960). 

5. Katskova. 0. N. and Shmyglevskii, Iu.D., Osesimmetrichnoe sverkhzvu- 
kovoe techenie svobodno razshiriaiushchegosia gaza s ploskoi 
perekhodnoi poverkhnostiu (Axisymmetric supersonic flow of a freely 
expanding gas with a plane-transitional surface). Sb. “Vychislitel- 

naia materatika” (Collection “Numerical Analysis”). NO. 2. Izd-vo 
Akad. Nauk SSSR, 1957. 

Translated by M.V. M. 


